

Reg.	No).	:	•		•	•	 			•	 		 	-		•	• •	•	•
Name	:																			

II Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.)
Examination, April 2022
(2018 Admission Onwards)
MATHEMATICS
MAT2C08: Advanced Topology

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. A bounded metric space need not be totally bounded. Justify.
- 2. Let (X, τ) be a topological space and $A \subseteq X$, then define the subspace topology τ_A induced on A. Also if A is compact in (X, τ) , then prove that A is compact in (A, τ_A) .
- 3. Not every T₀ space is T₁. Justify.
- 4. Give an example of a normal space with a subspace that is not normal.
- 5. Prove that an open interval in \mathbb{R} with subspace topology is homeomorphic to \mathbb{R} .
- 6. Let (X, τ) be a topological space and f, g : $X \to I$ be continuous functions. When is f homotopic to g ? (4×4=16)

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. a) Prove that every compact metric space has the Bolzano-Weierstrass property.
 - b) Show that a closed subset of a countably compact space is countably compact.

K22P 0191

- 8. a) Prove that every compact subspace of a Hausdorff space is closed.
 - b) Show that the property of being a T₁ space is preserved by one-to-one, onto, open mappings and hence is a topological property.
 - c) In a topological space (X, τ) , prove that an arbitrary intersection of closed sets is closed and finite union of closed sets is closed.
- 9. a) Prove that every compact space is locally compact. Also show that $\mathbb R$ is locally compact.
 - b) Show that every open continuous image of a locally compact space is locally compact.
 - c) Prove that every locally compact Hausdorff space is a regular space.

Unit - II

- 10. a) Prove that a topological space (X, τ) is a T_1 space iff τ contains the cofinite topology on X.
 - b) Show that being a regular space is a heriditory property.
 - c) Prove that every metric space is a completely regular space.
- 11. a) Let $\{(X_{\alpha}, \tau_{\alpha}) : a \in \Lambda\}$ be a family of topological spaces and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Prove that (X,τ) is regular if and only if $(X_{\alpha},\tau_{\alpha})$ is regular for each $\alpha \in \Lambda$.
 - b) Define a completely regular space. Prove that a T_1 space (X, τ) is completely normal if and only if every subspace of it is normal.
- 12. a) Define order topology on X. If (X, \le) is an ordered set with order topology τ , then show that (X, τ) is a normal space.
 - b) Show that every second countable regular space is normal.

Unit - III

- 13. a) State Urysohn's Lemma and deduce that every normal space is completely regular.
 - b) Suppose (X, τ) is a topological space. Prove that the space X is normal iff every continuous real function f defined on a closed subspace F of X into a closed interval [a, b] has a continuous extension from $X \to [-1, 1]$.
- 14. a) State Alexander subbase theorem and using it prove that the product of compact spaces is compact.
 - b) For $n \in \mathbb{N}$, let (X_n, d_n) be a metric space and $X = \prod_{n \in \mathbb{N}} X_n$ and let τ be the product topology on X. Prove that (X, τ) is metrizable.
- 15. a) State and prove Urysohn's Metrization Theorem.
 - b) Let (X, τ) be a topological space, let $x_0 \in X$ and let $[\alpha] \in \Pi_1$ (X, x_0) . Prove that there is an $[\tilde{\alpha}] \in \Pi_1$ (X, x_0) such that $[\alpha]$ o $\tilde{\alpha} = [\alpha][\tilde{\alpha}] = [e]$, where [e] is the identity element of Π_1 (X, x_0) . (4×16=64)